电力系统研究所
当前位置: 首页 >> 师资队伍 >> 专任教师 >> 电力系统研究所 >> 正文
赵浩然
发布时间:2025年04月10日 17:36    作者:    点击:[]

             77779193永利官网教师信息采集表

       

研究所

电力系统研究所

个人主页

www.zhaohaoran.top

学术身份

国家特聘教授(2017年入选),博士生导师,齐鲁青年学者(2016年入选)。目前为山东省能源研究会副理事长、IEEE高级会员、中国电机工程学会高级会员、教育部高等教育教学评估专家。CIGRE工作组C6.C1.33(综合能源系统)工作组成员、CIGRE C4.56 (大规模电力电子接入的大电网电磁暂态仿真模型)工作组成员、IEC SC 8A工作组专家、电机工程学会配电网控制运行专委会委员、电机工程学会能源互联网专委会委员、电工技术学会人工智能与电气应用专委会委员、仿真学会综合能源数字孪生专委会委员、可再生能源学会综合能源专委会委员。入选全球前2%顶尖科学家年度影响力排行榜。

目前担任IET Journal of Engineering期刊Deputy Editor、IEEE Trans. Sustainable Energy\IEEE Power Engineering Letters\IET Renewable Power Generation等期刊Associate Editor、电力保护与控制青年编委,受邀担任IEEE Trans. Energy Conversion\IEEE Journal of Emerging and Selected Topics in Power Electronics特刊Associate Editor,International Journal of Electrical Power & Energy Systems特刊主编。

工作经历

2005-2007 国家电网济南供电公司工程师

2009年间 德国Younicos AG 兼职工程师

2010-2011 德国DIgSILENT GmbH 项目工程师

2017-至今 77779193永利官网 教授(2019-2020,兼任77779193永利官网龙山校区建设办公室副主任)

2022-至今 77779193永利官网 副院长

2025-至今 沈阳理工大学 校长助理(挂职,中组部选派服务东北

个人信息

姓名

赵浩然

性别

出生日期

1983.04

籍贯

山东济宁

职称

教授

职务

副院长

电话

0531-81696100

Email

hzhao@sdu.edu.cn

研究方向

新能源发电与并网

新型电力系统建模与仿真

综合能源优化运行与控制

学术著作

近年代表性期刊论文,会议论文与书章节未列出。

[1] Wang M, Zhao H, Liu C, et al. Refined multi-time scale optimal scheduling of dynamic integrated energy system based on superposition of energy flow response[J]. Applied Energy, 2025, 380: 125071.

[2] Wang M, Zhao H, Liu C, et al. Dynamic Optimal Energy Dispatch Method for Integrated Energy System based on Superposition of Energy Flow Response[J]. IEEE Transactions on Power Systems, 2024.

[3] Wang J, Wang P, Zhao H. Comprehensive Impedance Analysis of DFIG-Based Wind Farms Considering Dynamic Couplings[J]. IEEE Transactions on Power Electronics, 2024.

[4] Yu J ,Zhao H,Jiang Y , et al.Efficient electromagnetic transient simulation for DFIG-based wind farms using fine-grained network partitioning[J].International Journal of Electrical Power and Energy Systems,2024,162110297-110297.

[5] Hu X, Ma J, Zhao H, et al. A weak leak location method based on signal attenuation mechanism for energy transportation system[J]. Energy, 2024: 132786.

[6] Tian H, Zhao H, Xin S, et al. A Mechanism-based Data-driven Interval Energy Flow Calculation Method for Integrated Energy Systems via Affine Arithmetic-based Optimization[J]. IEEE Transactions on Sustainable Energy, 2024.

[7] 江艺宝,于佳乐,赵浩然,等.新型电力系统电磁暂态并行仿真关键技术及展望[J].高电压技术,2024,50(07):3145-3160.

[8] 赵浩然,孟铃涵,江艺宝,等.面向新型电力系统的实时仿真平台综述与展望[J].高电压技术,2024,50(10):4611-4626.

[9] Wang P, Ma Y, Zhao H*. Online assessment of multi-parameter stability region and stability margin of wind power plants[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109413.

[10] 马悦鑫,王鹏*,赵浩然,贺敬,等.基于分段仿射阻抗模型的电压源变流器小扰动稳定域在线构造[J],中国电机工程学报,2023.

[11] Li B, Zhao H, Jiang Y, et al. Real-time simulation for detailed wind turbine model based on heterogeneous computing[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109486.

[12] Ma H, Liu C*, Zhao H, et al. A novel analytical unified energy flow calculation method for integrated energy systems based on holomorphic embedding[J]. Applied Energy, 2023, 344: 121163.

[13] Huang X, Tian H, Zhao H*, et al. Digital twins of multiple energy networks based on real-time simulation using holomorphic embedding method, Part I: Mechanism-driven modeling[J]. International Journal of Electrical Power & Energy Systems, 2023, 154: 109419.

[14] Tian H, Zhao H*, Li H, et al. Digital twins of multiple energy networks based on real-time simulation using holomorphic embedding method, Part II: Data-driven simulation[J]. International Journal of Electrical Power & Energy Systems, 2023, 153: 109325.

[15] Liu H, Liu C, Zhao H, et al. Non-intrusive Load Monitoring Method for Multi-Energy Coupling Appliances Considering Spatio-Temporal Coupling[J]. IEEE Transactions on Smart Grid, 2023.

[16] 王梦雪,赵浩然,刘春阳等.基于碳熵指标的电-热互联综合能源系统碳轨迹追踪方法[J].电力系统自动化,2023,47(09):13-22.

[17] Tian H, Zhao H*, Li H, et al. Interval-probabilistic Electricity-heat-gas Flow Calculation by Dual-level Surrogate Structure[J].IEEE Transactions on Smart Grid, 2023.

[18] 王金龙,赵浩然,王鹏,罗嘉,孙开宁.基于阻抗法的并网逆变器小信号稳定功率极限分析与提高[J].电力系统保护与控制,2022,50(18):18-28.

[19] 马钊,张恒旭,赵浩然等.双碳目标下配用电系统的新使命和新挑战[J].中国电机工程学报,2022,42(19):6931-6945.

[20] 刘俊伟,刘春阳,赵浩然*,等.基于知识引导深度神经网络的电-热综合能源系统状态估计[J].电网技术.

[21] 王俊杰,赵浩然*,刘春阳,陈常念,等.基于熵指标的热能输动态特性建模与仿真分析[J].中国电机工程学报.

[22] LI B, ZHAO H R, ZHANG K P. A heterogeneous accelerated simulation framework for wind field dynamic model [J]. Iet Renewable Power Generation.

[23] Mengxue Wang, Haoran Zhao, Hang Tian and Qiuwei Wu.Distributed Collaborative Optimization of Multi-region Integrated Energy System Based on Edge Computing Unit[J]. Frontiers in Energy Research

[24] 程建东,赵浩然,韩明哲.市场机制下推动风电参与电力市场的实践总结与启示[J].电网技术

[25] Tian H, Zhao H, Liu C, Chen J. Iterative Linearization Approach for Optimal Scheduling of Multi-regional Integrated Energy System[J]. Frontiers in Energy Research, 2021: 208.

[26] Tian H, Zhao H, Liu C, Chen J, Wu Q, Terzija V. A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system[J]. Applied Energy, 2022, 314: 11887

[27] Guo Y, Gao H, Wu Q, et al. Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2017, 9(1): 474-487.

[28] Gao S, Zhao H, Wang P, et al. Comparative Study of Symmetrical Controlled Grid-Connected Inverters[J]. IEEE Transactions on Power Electronics, 2021, 37(4): 3954-3968.

[29] 罗嘉,赵浩然,高术宁,王鹏,孙开宁.基于显式模型预测控制和改进虚拟阻抗的双馈风机低电压穿越策略[J].电网技术,2021,45(05):1716-1723.

[30] Zhao H, Lin Z, Wu Q, et al. Model predictive control based coordinated control of multi-terminal HVDC for enhanced frequency oscillation damping[J]. International Journal of Electrical Power & Energy Systems, 2020, 123: 106328.

[31] Kim C, Gui Y, Zhao H, et al. Coordinated LVRT control for a permanent magnet synchronous generator wind turbine with energy storage system[J]. Applied Sciences, 2020, 10(9): 3085.

[32] 陈健,林咨良,赵浩然,吴秋伟,宋关羽.考虑信息耦合的电–气综合能源系统韧性优化方法[J].中国电机工程学报,2020,40(21):6854-6864.

[33] 王梦雪,赵浩然,田航,陈健,吴秋伟.典型综合能源系统仿真与规划平台综述[J].电网技术,2020,44(12):4702-4712.

[34] Li B, Zhao H, Gao S, et al. Digital real-time co-simulation platform of refined wind energy conversion system[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105676.

[35] Luo J , Zhao H , Gao S , et al. A Low Voltage Ride Through Strategy of DFIG based on Explicit Model Predictive Control [J]. International Journal of Electrical Power & Energy Systems. 2020,119, 105783.

[36] Gao S, Zhao H, Gui Y, et al. Impedance analysis of voltage source converter using direct power control[J]. IEEE Transactions on Energy Conversion, 2020, 36(2): 831-840.

[37] Gao S, Zhao H, Gui Y, et al. An improved direct power control for doubly fed induction generator[J]. IEEE Transactions on Power Electronics, 2020, 36(4): 4672-4685.

[38] Gao S, Zhao H, Gui Y, et al. A novel direct power control for DFIG with parallel compensator under unbalanced grid condition[J]. IEEE Transactions on Industrial Electronics, 2020, 68(10): 9607-9618.

[39] Huang S, Wu Q, Zhao H, et al. Distributed optimization-based dynamic tariff for congestion management in distribution networks[J]. IEEE Transactions on Smart Grid, 2017, 10(1): 184-192.

[40] Zhao H, Wu Q, Huang S, et al. Hierarchical control of thermostatically controlled loads for primary frequency support[J]. IEEE Transactions on Smart Grid, 2016, 9(4): 2986-2998.

[41] Guo Y, Gao H, Wu Q, et al. Enhanced voltage control of VSC-HVDC-connected offshore wind farms based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2017, 9(1): 474-487.

[42] Zhao H, Wu Q, Wang J, et al. Combined active and reactive power control of wind farms based on model predictive control[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1177-1187.

[43] Zhao H, Wu Q, Huang S, et al. Fatigue load sensitivity-based optimal active power dispatch for wind farms[J]. IEEE Transactions on sustainable energy, 2017, 8(3): 1247-1259.

[44] Zhao H, Wu Q, Guo Q, et al. Coordinated voltage control of a wind farm based on model predictive control[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1440-1451.

[45] Huang S, Wu Q, Zhao H, et al. Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables[J]. Energy Procedia, 2016, 100: 1-7.

[46] Zhao H, Wu Q, Guo Q, et al. Distributed model predictive control of a wind farm for optimal active power controlpart I: Clustering-based wind turbine model linearization[J]. IEEE transactions on sustainable energy, 2015, 6(3): 831-839.

[47] Zhao H, Wu Q, Guo Q, et al. Distributed model predictive control of a wind farm for optimal active power controlpart II: Implementation with clustering-based piece-wise affine wind turbine model[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 840-849.

[48] Zhao H, Wu Q, Rasmussen C N, et al. ${\cal L} _1 $ adaptive speed control of a small wind energy conversion system for maximum power point tracking[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 576-584.

[49] Huang S, Wu Q, Cheng L, et al. Uncertainty management of dynamic tariff method for congestion management in distribution networks[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4340-4347.

[50] Zhao H, Wu Q, Guo Q, et al. Optimal active power control of a wind farm equipped with energy storage system based on distributed model predictive control[J]. IET Generation, Transmission & Distribution, 2016, 10(3): 669-677.

[51] Korompili A, Wu Q, Zhao H. Review of VSC HVDC connection for offshore wind power integration[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1405-1414.

[52] Zhao H, Wu Q, Hu S, et al. Review of energy storage system for wind power integration support[J]. Applied energy, 2015, 137: 545-553.

[53] Zhao H, Wu Q, Margaris I, et al. Implementation and validation of IEC generic type 1A wind turbine generator model[J]. International Transactions on Electrical Energy Systems, 2015, 25(9): 1804-1813.

[54] Zhao H, Wu Q, Wang C, et al. Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(3): 422-428.

承担科研项目

1.海外高层次人才专项基金,主持。

2.国家重点研发计划课题:信息能源耦合节点能量一致标度及其自适应持续进化建模,主持。

3.国家重点研发计划子课题:电网故障下风电机组电压/频率暂态主动支撑技术研究,主持。

4.国家重点研发计划子课题:大容量风电机组电网友好型控制技术,主持。

5.国家自然科学基金项目:基于分布式模型预测控制的风电场有功控制系统的研究,主持。

6.国家自然科学基金子项目:综合能源系统统一建模与精细化仿真,主持。

7.国网科技项目:基于大型风电场实时仿真等值模型的电力系统动态仿真技术研究,主持。

8.国网科技项目:基于DIgSILENT的MMC模型开发与交流系统分析研究,主持。

9.国网科技项目:大规模风电场并网宽频震荡风险评估模块开发,主持。

10.国网科技项目:混合直流数字物理混合仿真接口算法研究,主持。

11.国网科技项目:“新能源场站+共享储能”协同控制与综合评价关键技术研究,主持。

12.国网科技项目:新能源电站的实测建模与模型参数优化技术研究,主持。

13.电科院项目:风电场精细化模型开发及实时在线仿真技术,主持。

14.电科院项目:创新自筹-大规模风电场并网宽频震荡风险评估模块开发,主持。

15.南方电网:支持BPA数据转化的DIgSILENTPower Factory电网模型搭建,主持。

16.上电科项目:逆变器DIgSILENT建模测试,主持。

17.上电科项目:逆变器的PowerFactory建模 ,主持。

学术类型

可培养学术型、专业型研究生

课题组常年诚招相关研究方向的硕士、博士研究生及博士后,有意者可电话或邮件联系(邮件请附个人简历),成绩优秀者可与丹麦、德国的科研单位联合培养。

我们立足能源低碳转型大背景,研究方向覆盖风电场并网控制与稳定性分析、综合能源系统建模与运行优化、能源数字孪生等广泛领域,通过理论研究和工程实践解决新型电力系统的重大挑战。课题组热忱欢迎自我驱动、求知若渴的本科生加入,并为同学提供各种软硬件科研平台、学长指导、科创发明比赛和研究补助。REDNet课题组欢迎你的加入!


上一条:刘玉田 下一条:李常刚

关闭

Copyright © 2019 All rights reserved. 版权所有:中国·永利集团(77779193-VIP认证)官方入口-Best Platform
电话:0531-88392369 传真:0531-88392369 77779193永利官网千佛山校区 济南市经十路17923号 邮编 250061 77779193永利官网兴隆山校区 济南市二环东路12550号 邮编 250002